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Across many scientific disciplines, methods for recording, storing,
and analyzing data are rapidly increasing in complexity. Skillfully
using data science tools that manage this complexity requires
training in new programming languages and frameworks as well
as immersion in new modes of interaction that foster data shar-
ing, collaborative software development, and exchange across
disciplines. Learning these skills from traditional university curric-
ula can be challenging because most courses are not designed to
evolve on time scales that can keep pace with rapidly shifting data
science methods. Here, we present the concept of a hack week
as an effective model offering opportunities for networking and
community building, education in state-of-the-art data science
methods, and immersion in collaborative project work. We find
that hack weeks are successful at cultivating collaboration and
facilitating the exchange of knowledge. Participants self-report
that these events help them in both their day-to-day research
as well as their careers. Based on our results, we conclude that
hack weeks present an effective, easy-to-implement, fairly low-
cost tool to positively impact data analysis literacy in academic
disciplines, foster collaboration, and cultivate best practices.
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As data become cheaper to gather and store, researchers
have become increasingly reliant on computational work-

flows requiring skills in statistical modeling, machine learning,
and scalable computation. In addition, recent concerns about
reproducibility crises motivate the acquisition of skills in open
science and the design of reproducible workflows (e.g., refs. 1
and 2). Formal university curricula have been relatively slow to
offer courses in these important topics, and this vacuum is often
filled by extracurricular, ad hoc, less formal workshops. Well-
known examples include software and data carpentry workshops,
which provide training in research computing through a volun-
teer instructor program (3, 4). Meanwhile, there is an increase
in statistical and computational courses designed for specific sci-
entific disciplines, such as the Summer School in Statistics for
Astronomers (astrostatistics.psu.edu/su16/), the Google Earth
Engine User Summits (https://events.withgoogle.com/google-
earth-engine-user-summit-2017/), as well as a variety of project-
focused (rather than pedagogical) meetings, such as the dotAs-
tronomy meetings (dotastronomy.com). Shorter meetings are
also held in conjunction with conferences, such as the Hack
Days at the annual American Astronomical Society meetings,
the Brainhack hackathons associated with the meetings of the
Organization for Human Brain Mapping and the Society for
Neuroscience (5), and a hackathon at the American Geo-
physical Union meeting (onlinelibrary.wiley.com/doi/10.1002/
2014EO480004/pdf). In general, many of these events either
tend to emphasize more traditional pedagogical class and lecture
methodologies or focus on ad hoc projects developed during the

event (Fig. 1). Pedagogically focused events follow a classic aca-
demic model where novices learn new skills from experts. This
model tends to focus on a one-way flow of information from
instructor to student and is usually targeted toward participants
in the training phase of their career. On the other end of the
spectrum, project-focused workshops emphasize collaborative
activities using existing skills, leading to the common percep-
tion that they are designed for technical experts. This may limit
their audience. To bridge this gap, we describe here a model that
we have implemented: “Hack Weeks” that aim to capitalize on
the advantages of each of these models. These week-long events
combine structured periods focused on pedagogy (often with
an emphasis on statistical and computational techniques) and
less structured periods devoted to hacks and creative projects,
with the goal of encouraging collaboration and learning among
people at various stages of their career.

We have run eight such hack week events: four focused on
astronomy and two each focused on neuroscience and geo-
science. Here we share the philosophy behind the hack week
model, results from surveys of participants, practical lessons we
have learned in organizing these events, and recommendations
for future hack weeks. SI Appendix provides additional details on
the practical aspects of organizing these events.

Significance

As scientific disciplines grapple with more datasets of rapidly
increasing complexity and size, new approaches are urgently
required to introduce new statistical and computational tools
into research communities and improve the cross-disciplinary
exchange of ideas. In this paper, we introduce a type of sci-
entific workshop, called a hack week, which allows for fast
dissemination of new methodologies into scientific commu-
nities and fosters exchange and collaboration within and
between disciplines. We present implementations of this con-
cept in astronomy, neuroscience, and geoscience and show
that hack weeks produce positive learning outcomes, fos-
ter lasting collaborations, yield scientific results, and promote
positive attitudes toward open science.
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Fig. 1. Different types of events lie on a spectrum between an empha-
sis on pedagogy (e.g., Software Carpentry workshop) and an emphasis on
project-based/hack-based activities (e.g., at science-oriented hackathons).
Hack weeks also vary in the degree of emphasis on projects (e.g., Astro Hack
Week, AHW) or pedagogy (e.g., Neuro Hack Week, NHW).

What Is a Hack Week?
Our hack weeks combine structured, tutorial-style instruction
with open-ended project work, providing opportunities for peer
learning, networking, and building collaborations. In a space
spanned by pedagogical focus as one dimension and focus on
project work as the other, the hack weeks we have organized
are designed to lie somewhere in between traditional summer
schools and hackathons, where we believe they fill a space not
currently fully addressed by existing models (Fig. 1).

The hackathon, a time-bounded, collaborative event that
brings together participants around a shared challenge or
learning objective (6), forms one primary axis of our events.
Hackathons originated from the open-source software move-
ment and have historically focused on software and technology
development. In recent years, hackathons have evolved into
a model providing opportunities for intensive, interdisciplinary
collaboration (7) and education (8, 9) in the sciences. Core
elements of hackathons include opportunities for networking,
strengthening social ties, and building community connections,
both within and across disciplines. Building on these core ele-
ments, hackathons have been implemented in different ways
depending on the overall purpose, mode of participation, style
of work environment, and participant motivation (10).

Summer schools have been designed to excel in transfer of
knowledge from experts in the field to (early-career) researchers:
They often serve as an entry point for scientists who aim to
expand their research into a new area or switch fields. They
are excellent at giving participants a reasonably deep under-
standing of a topic or field in a short amount of time. Within
this concept, learning can take many forms, including tradi-
tional lecture formats but also hands-on project work, often in
teams (e.g., Advanced Course on Computational Neuroscience,
Okinawa Computational Neuroscience Course, Woods Hole
Computational Neuroscience Summer course).

Our hack weeks extend the scientifically focused, communal
hackathon model into a space that includes a strong element
of pedagogy and peer learning. They aim to synthesize dif-
ferent goals and strategies from both models: They are more
participant-driven than a summer school but have a stronger
focus on pedagogy than a hackathon. Where a summer school
is often organized around a framework of lectures and tutorials
known in advance, hack weeks leave the majority of time to be

designed by participants, under careful facilitation of the orga-
nizers. Tutorials at hack weeks often serve as an entry point into
a topic for further exploration and learning.

Hack weeks uniquely allow organizers to tailor the content of
the workshop to the needs of the participants in an ad hoc fash-
ion, including the number and content of tutorials. This way,
the group as a whole can respond quickly or react to unfore-
seen challenges and opportunities. They encourage participants
to self-organize in many different forms: experts working with
other experts, mentoring relationships between experts and non-
experts, or study groups among nonexperts, to name but a few.
Hack weeks also allow participants to experiment with projects
and ideas beyond their day-to-day research: For example, our
hack weeks explicitly encourage projects around outreach and
work aimed at improving the scientific community itself.

There is, however, a major risk in the lack of focus: By wanting
to do many things at once, a hack week might potentially not do
any of them well. Because tutorials are not necessarily the major
focus of a hack week, the knowledge gained by participants in
these tutorials may be shallow. A hack week carries a much larger
risk of failure if objectives and expectations are not set by orga-
nizers well in advance, and clearly communicated to participants,
because they often require significant preparation from the side
of participants. Because of these risks, organizers face a much
larger degree of uncertainty and need to be prepared to focus
much of their energy on thoughtful selection and management
of participants and facilitation of the large range of differ-
ent types of activities at any given time (see also SI Appendix,
Section 4.2.4).

We note that the terminology for these events is constantly
evolving and that the “hackathon” concept may have implicit
connotations that are disfavored in some communities. We
also note that all of these events live on a constantly chang-
ing continuum, depending on the requirements of the scientific
domain within which they live. For example, NHW is moving
toward a more traditional summer school model, while AHW has
strengthened its focus on projects and hacks in recent iterations.

Why Run a Hack Week?
Education and Training. While some hack weeks are more focused
on education than others (see Fig. 1), skill development in the
form of tutorials as well as informal and peer learning is often a
component. Furthermore, lateral knowledge transfer (3) through
collaboration provides an opportunity to learn skills that are not
described in papers and software implementations.

Tool Development. Hack weeks present an opportunity for scien-
tific software developers to meaningfully engage with users and
critically evaluate applications to particular scientific issues.

Community Building. Hack weeks are an opportunity to catalyze
community development through a shared interest in solving
computational challenges with open source software. They allow
computationally minded researchers to break from the isolation
of their institutions and spark new collaborations.

Interdisciplinary Research. Intensive, time-bounded collaborative
events are an opportunity to experiment with concepts, ques-
tions, and methods that span boundaries within and across
disciplines. Despite the fact that interdisciplinary experiments
are impactful (11), they are often discouraged in traditional
academic environments (12).

Recruitment and Networking. Hack weeks are a melting pot of
participants from academia, government, and industry and pro-
vide numerous opportunities for networking. Close collaboration
in diverse groups exposes skills that might be suitable for careers
outside of a narrow domain.
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It Is Fun. Hack weeks provide a respite from routine and a low-
stress venue to learn new skills and attempt high-risk projects.

Note that the reasons for participants to attend a hack week
are as diverse as the reasons for running such an event. Beginner
participants may attend primarily to learn a new technique, while
others may attend to gain experience in mentoring or to focus on
an existing project already in progress (for more details on setting
objectives, see SI Appendix, Section 4.1.2).

Audience and Participant Selection
Hack weeks differ from many traditional conferences or summer
schools in that knowledge transfer occurs across many levels of
seniority and disciplinary boundaries. In addition, a substantial
amount of hack week content is generated during the event itself,
requiring active participation from attendees. In our experience,
maximizing learning outcomes and collaborative exchanges at
hack weeks requires a participant group that is diverse across cat-
egories of minority status, geographical origin, gender, discipline,
and career stage, among others.

Traditional selection processes that rely heavily on internal
heuristics of reviewers, especially those that consider charac-
teristics peripheral to the evaluation criteria, are often fraught
with personal and structural biases (e.g., ref. 13). To maximize
diversity and minimize bias, we advocate for a selection process
that is as quantitative and transparent as possible (13), enabling
participants to hold organizers accountable for their selection
decisions. This requires laying out a definition of successful par-
ticipation, defining what criteria must be met to maximize the
likelihood of success, and defining how those criteria will be
assessed given the information about the candidates selected
during the application stage.

For hack weeks, prerequisites will depend on the objectives of
the workshop and may not exist at all. For example, AHW has
traditionally accepted participants at all skill levels with respect
to data science and did not include a merit-based selection,
whereas NHW did include skill-based criteria in their selec-
tion (see also SI Appendix, Section 4.1.5 for more detail on the
individual selection procedures).

If merit-based selection is part of the evaluation process, orga-
nizers face the crucial decision of whether to assess merit blinded
to other applicant characteristics. Because human decision mak-
ers tend to be swayed by unrelated characteristics including name
(14) or gender (15), an initial merit selection blinded to demo-
graphic characteristics can be an effective way to counteract
certain biases. A merit selection could then be performed via
scores given independently by members of the organizing com-
mittee based on a set of predefined, explicit selection criteria.
This type of blinded procedure tends to reduce biases when
committees would otherwise not consider diversity during their
selection (16).

However, a blind selection based purely on an assessment of
merit will be counterproductive if it excludes participants who
might have had less exposure to certain technologies or fewer
opportunities to learn certain skills: For example, requiring a
minimum level of programming experience will likely disad-
vantage candidates who have had fewer opportunities to learn
programming due to structural inequalities. Additionally, blind-
ing has been found to have negative effects on diversity for
committees that already have a strong commitment to diversity,
because these committees often correct for structural inequali-
ties by considering demographic variables during merit selection
(17). In this case, it may be beneficial to construct selection cri-
teria that explicitly consider diversity and inclusivity (as NHW
has done; see also SI Appendix, Section 4.1.5). Because sys-
temic biases likely also enter at the application stage (where
underrepresented groups may be less likely to apply), organiz-
ers should consider oversampling traditionally disenfranchised
groups compared with the population of applicants.

No matter the selection procedures used, we encourage orga-
nizers to critically examine their cohort selection, experiment
with new approaches, and routinely evaluate their procedure.
For example, comparing demographic characteristics of the
selected versus nonselected groups can unveil unintended biases
during the merit-selection phase and thus allows adjustments in
the procedure to mitigate or fully remove these effects.

Themes
To date, all hack weeks we have organized have been subject-
specific—that is, aimed at bringing together a community with
a shared scientific interest, such as neuroscience. Advantages
of this approach include shared language and scientific objec-
tives within communities organized by subject, leaving more
time for active collaboration on cutting-edge science. On the
other hand, homogeneity may lead to group think and inhibit
new, creative solutions. In this case, it may be advantageous
to design a hack week around a technique (e.g., Gaussian Pro-
cesses) or modality (e.g., imaging), such as the ImageXD (image
processing across domains; www.imagexd.org/) meetings. For
these events, building a shared vocabulary and shared under-
standing of major data analysis problems is crucial, but they also
allow for cross-disciplinary diffusion of techniques into other
subjects and therefore decrease the risk of duplication of method
development efforts.

Design Considerations
Several design elements contribute to the success of a hack
week (see also SI Appendix, Sections 4.1 and 4.2 for practi-
cal guidance). For example, scheduling: Longer events allow
for a larger taught component, more ambitious projects, and
cross-disciplinary exchanges. By spending more time together,
participants are more likely to overcome barriers of profes-
sional terminology. But events that are too long may also lead
to fatigue, resulting in a drop in positive outcomes later in the
workshop. A well-designed hack week will have a clear sched-
ule, limiting the number of parallel sessions and balancing the
duration of taught components and project work.

The space used is also an important consideration. A hack week
requires a flexible workspace that allows re-configuration, accom-
modating both lectures combined with interactive exchanges and
individual work on laptops, as well as project work in small teams
(see SI Appendix, Sections 4.1.3 and 4.1.4). Fortunately, many uni-
versities are experimenting with new types of spaces that allow
these kinds of activities, and the adoption of active learning
teaching methods (18) has led to the development of modu-
lar classrooms, designed for group activities and flexible seating
arrangements.

Another design consideration is group size (see SI Appendix,
Section 4.1.4). In a large group, chances for random participant
exchanges may be reduced, and knowledge transfer may decline
as the workshop fractures into smaller groups, often among par-
ticipants who already know each other. If the group is small,
participant selection must be especially carefully managed to
achieve the desired level of diversity among participants to foster
new collaborations. We have found groups with sizes between 40
and 70 participants to work well in enabling a breadth of projects
while allowing the workshop to function as a cohesive group, but
we encourage organizers to experiment with group size.

Hack week outcomes depend strongly on the interest and
engagement of participants. Some attendees arrive with the goal
of writing a scientific article; others plan to learn a specific topic
(e.g., machine learning) or to analyze specific data using the
tools covered in the tutorials. This leads to a wide variety of
project types from sandbox-style explorations to focused work
efforts. This breadth of possible outcomes makes it difficult to
design for all possible participant goals and calls for adaptive,
flexible design. The large variety in participant backgrounds and
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experiences—and the resulting range in personalities and objec-
tives of attendees—requires careful, active facilitation of both
taught and project components of a hack week (see SI Appendix,
Section 4.2.4). A well-advertised and enforced Code of Conduct
is a very effective tool for managing expectations about partic-
ipant interactions (see SI Appendix, Section 4.1.7). Community
building is a core component of a hack week, and facilitation
efforts need to consider both very strong personalities and very
shy participants. In particular, the presence of impostor syn-
drome experienced by many participants must be taken into
account during workshop design (see also SI Appendix, Section
4.2.5 for concrete suggestions).

Results
Measuring the success of a hack week objectively is complicated
by the variety of goals that a hack week might have (see above).
Additionally, the participant-driven format facilitates knowledge
transfer and collaborations in sometimes surprising ways that
escape traditional measures of success.

One key metric is the number of publications that result from
hack week projects, but this is a fairly narrow definition of suc-
cess, in line with standard academic performance indicators.
Assuming that participants work largely in the open during a
hack week and that most projects have a strong programming
component, another indicator of success is the activity of partici-
pants in terms of code written and committed to a public code
repository. Still, these measures ignore learning, community-
building, as well as networking outcomes, which can be assessed
through postworkshop surveys. Here, we have taken an approach
that combines these metrics: We start with survey results and
anecdotally report about publications and projects generated
(see the following section).

Focusing on the outcomes of AHW, GHW, and NHW from
2016–2017, we find that most participants self-reported success-
ful learning outcomes (AHW 76%, GHW 89%, and NHW 79%
for responses “somewhat agree,” “agree,” and “strongly agree”;
Fig. 2A). The overwhelming majority of respondents at the hack
weeks (> 95% for all events) believed that they learned things
that improved their day-to-day research and that attendance has
made them a better scientist (Fig. 2 B and C). Because peer

learning is a major mode of knowledge transfer at hack weeks,
we asked participants whether they taught other participants.
We find that again a majority agreed with this statement to
some degree (AHW 79%, GHW 69%, and NHW 75%; Fig. 2D),
though responses are not as unequivocal as they are in some of
the other categories. The majority of participants felt that they
built valuable connections to other researchers (Fig. 2E), espe-
cially at NHW, where more than 64% of participants strongly
agreed with this statement.

Given the diversity in skills and backgrounds of participants
admitted to our hack weeks, a dependence of learning outcomes
and teaching on career stage is plausible. At the same time,
as suggested earlier, peer learning is a major mode of knowl-
edge transfer for participants of all career stages. We find no
strong evidence for a significant difference between early-career
and senior participants in any of the hack weeks for ques-
tions regarding learning outcomes of new tools and topics (Fig.
2A), improvements in day-to-day research (Fig. 2B), or overall
improvements in science (Fig. 2C) [p> 0.0007 (trial-corrected
significance threshold) with zero or small effect size for all]. Data
and all (including nonsignificant) correlations are presented in
SI Appendix, Section 2, Table S1 and SI Appendix, Section 3, Figs.
S1–S12. Only for GHW do we find that early-career researchers
agree more strongly that the hack week improved their day-to-
day research (P = 0.02) with a large effect size of φc =0.35 for
1.88 degrees of freedom (following ref. 19). Similarly, we find no
indication (p> 0.0007) that late-career researchers self-report
a higher level of teaching at hack weeks compared with early-
career researchers (Fig. 2D). However, the confidence intervals
on the measured effect sizes are wide. Testing for the absence
of an effect using an equivalence test on the effect size with an
equivalence bound corresponding to a moderate effect size sug-
gests that the data are currently not conclusive enough to reject
a moderate to large effect (peq> 0.0007 for all four questions
above).

One important question is whether participants from under-
represented groups thrive at hack weeks or whether their
full participation is impeded. Significant differences between
minorities and nonminorities, even on a self-reported scale, for
questions related to learning outcomes, teaching, or network

A

F

B

E G

C

H

D

Fig. 2. Postworkshop survey responses from the 2016 AHW, GHW, and NHW. Response rates are in the panel titles. Results are presented in three different
domains: the development of technical skills (A–C), collaboration and teaching (D–F), and shifts in attitudes toward reproducibility and open science
(G and H).
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building, would indicate that improvements in workshop facili-
tation and structure may be required to allow members of these
groups to participate fully. In our surveys, we find no signifi-
cant dependence of self-reported learning outcomes on gender
identity or race/ethnicity (p> 0.0007). Similarly, for none of
the hack weeks do minority participants differ significantly in
their answers with respect to teaching outcomes, building valu-
able connections, or the value of their contributions to their
hack teams (p> 0.0007). For GHW, there is an indication that
participants from racial/ethnic minorities may respond more pos-
itively when asked about building connections (p=0.04) with
a medium to large effect size (φc =0.4; dofφc =0.97), while
for AHW, responses regarding the value of contributions to
hack teams may be spread more widely for participants from
racial/ethnic minorities than for Caucasian participants (p=
0.01; φc =0.4; dofφc =0.98). Equivalence tests reveal system-
atically small, though nonsignificant, p values in the range of
p=0.02− 0.05 for AHW for all four questions above in con-
junction with gender or ethnic/racial identity, while for GHW
and NHW p> 0.05 for the same questions (note that the sample
size for GHW and NHW was smaller by a factor of 2 compared
with AHW). These results, while not a decisive exclusion of an
effect of race/ethnicity or gender on hack week participation,
provide an indication that our facilitation strategies may be effec-
tive in fostering participation. Future work on how demographics
interact with hack week attendance may be fruitful.

We find that the hack weeks have been largely successful in
promoting positive attitudes toward reproducibility and open sci-
ence: At all three events, the majority reported that the hack
week has made them more comfortable with open science (GHW
97%, NHW 95%, AHW 72%; Fig. 2H), and more than 85% of all
participants (AHW 86%, GHW 94%, NHW 95%; Fig. 2G) put
code or data created at the hack week into a public repository.
While the focus on open science is not necessarily a required
component of a hack week, it aligns naturally with many of the
goals and values commonly promoted at hack weeks, such as
production of open-source software and data sharing. In some
fields, especially where ethical issues around data sharing and
privacy are relevant, this should be augmented with a discussion
of ethical considerations.

In line with the surveys’ exploratory nature, these results
should be read only as an initial indication of the hypotheses
we proposed about the use and outcomes of hack weeks. The
number of respondents is small and the effects likely subtle, and
lack of significant differences may be due to statistical power
in our sample. Furthermore, the most important independent
variable—attendance of a hack week—is not accounted for in
our current design. Moreover, self-reported learning outcomes
are not an objective measure, because they are likely subject to
response biases. Future work will include more refined survey
design and inclusion of control nonattendees.

Because all three events are relatively recent, it is still early to
evaluate long-term outcomes, including publications and collab-
orations resulting from these events. There are, however, initial
indicators that all hack weeks encouraged long-term engagement
with new concepts or tools and that they directly resulted in a
number of publications (20–27). Specific examples follow below.

Examples of Hack Week Outcomes
Example 1: AHW. In 2015, a small team used AHW to found
a new software project called Stingray (https://github.com/
StingraySoftware/stingray) with the goal of providing implemen-
tations of time series analysis algorithms often used in astron-
omy. AHW enabled participants to seed a new collaboration
around a software project needed by the larger community, facil-
itated by the collaborative environment at AHW. Stingray has
since matured into an enduring collaboration within the com-

munity with five active maintainers and four Google Summer of
Code projects.

Example 2: GHW. In 2016, a GHW project team used Google
Earth Engine to explore spatial patterns in climate, topography,
and population data with the goal of mapping the most suit-
able locations for renewable energy sites in the United States.
The team used machine learning algorithms in conjunction with
the powerful hardware resources provided by Google Earth
Engine (georgerichardson.net/2017/04/10/searching-for-energy-
in-a-random-forest/).

Example 3: NHW. During NHW 2016, one of the teams analyzed
an openly available dataset of MRI data from children (28), to
test the effects of motion on analysis results, using varying motion
cutoffs. The team (all from different institutions) continued to
work on this project remotely after the end of NHW, eventually
publishing a paper describing these results (23).

Conclusions
The fast-paced changes in the computational and method-
ological landscape require that traditional fields of science
rapidly adapt to new data analysis challenges. To address these
challenges, new types of workshops, including unconferences,
hackathons, and bootcamps, have been developed in recent years
in various scientific disciplines and now exist alongside with and
support the existing structure of academic conferences, formal
classes, and other learning opportunities. Here, we introduce
one such concept, hack weeks, and detail the underlying philo-
sophical ideas along with experiences from events held in three
different fields.

Hack weeks serve multiple purposes, including dissemina-
tion of technological advances through the scientific community,
building collaborations between academic subdisciplines, and
fostering interdisciplinary research. Initial results from six events
held in 2016 and 2017 in three different fields (astronomy, geo-
sciences, and neurosciences) indicate that hack weeks succeed at
all of these objectives.

Hack weeks are still a very young concept, and estimating
the long-term impact of these events within the scientific com-
munities they serve will require follow-up over multiple years,
to assess their effect on collaboration networks, career out-
comes, and adoption of new methods. We have shown, however,
that hack weeks provide an easy-to-implement, fairly low-cost
method to introduce new technologies and methods into scien-
tific fields on much shorter time scales than traditional teaching
efforts. While we focus here on hack weeks in scientific fields, the
concept could be extended to other areas and is more generally
useful in any area (i) where useful tools can be learned in short
tutorials, (ii) where results and outcomes can be produced on the
time scale of a few days, and (iii) that would benefit from collab-
orative approaches that cross traditional boundaries. Such areas
could include the social sciences, the humanities, as well as music
and art.

Materials and Methods
We performed postattendance surveys for AHW, GHW, and NHW in 2016
and 2017. All surveys contained general questions about attitudes toward
the workshop as well as open science and reproducibility, shared among
all three surveys. Response rates for NHW (2016: 41 responses; 2017: 45
responses) and GHW (2016: 42 responses; 2017: 41 responses) were 100%
in both years; the response rate for AHW was 71% (35 out of 49) in 2016
and 82% (37 out of 45) in 2017. Participants were asked to respond to
statements regarding these topics using a six-point Likert-type scale. All
questions were anonymously recorded. The experimental procedures were
approved by the Institutional Review Boards at University of Washington;
New York University; and University of California, Berkeley. All participants
gave their informed consent. No responses were discarded, and no pre-
processing was performed on the data. We test for correlations between
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demographic characteristics (independent variable) and question responses
(dependent variable) using a standard χ2 test and compute the effect sizes
via a bias-corrected version of Cramér’s V (29, 30), denoted φc. We addition-
ally perform equivalence tests on the effect size to quantify the absence
of correlations. The full procedure is available in SI Appendix, Section 1
and online (see the repository: https://github.com/uwescience/HackWeek-
Writeup).
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